Some aspects of program implementation
pseudorandom sequence generators

0. Geiko

Department of Computer Science
Vasyl Stefanyk Precarpathian
National University
Ivano-Frankivsk, Ukraine
ifgo69@gmail.com

S. Dolinovska

Department of Computer Science
Vasyl Stefanyk Precarpathian
National University
Ivano-Frankivsk, Ukraine
sdolinovska@gmail.com

Jlesik1 aceKTH IMpOorpaMHO1 pealrizallli FeHepaTopiB
TICEBIOBUITAIKOBUX IMOCI1IOBHOCTEN

O. I'efiko
kadespa iHpopMaTUKH
[MpukapraTchkuit HalliOHATBHUH YHIBEpCHTET
imeri Bacua Credannka
IBaHO-®paHKiBCHK, YKpaiHa
ifgo69@gmail.com

Abstract — This article considers some aspects of the software
implementation of pseudorandom generators, for example
generator according to the scheme on the Galois shift registers
with linear feedback, with using high-level programming
languages, high-level languages with low level of abstraction and
language of Assembler. It is proved the efficiency of the software
generation of pseudorandom sequences of maximum length,
which is based on the algorithms by using the following
commands manipulate bits.

Anomayin — B crarri poOINISIHYTO JIesIKi ACHEKTH
nporpaMHoi peafizanmii reHepaTopiB = NCeBIOBHTIATKOBHX
MOCJIiI0BHOCTEl, HA NPUKJIA TeHepaTopa 3a cxemoro ['amya Ha
pericrpax 3cyBy 3 JiHiiiHMMM 3BOPOTHMMM 3B'fI3KamMu, 3
BHKOPHCTAHHSIM MOB IIPOTrpaMyBaHHSI BHCOKOIO piBHSI, MOB
BMCOKOI0 piBHSI 3 HU3bLKMM piBHeMm afcrpakuii i MoBM
Assembler. JloBeeHo epeKTHBHiCTL NPOrpamMHOro
3a0e3meveHHsi reHepyBaHHsl NCEBIOBMNIAIKOBHX N0CAi10BHOCTEl
MaKCHMAJIbHOI IOB)KHHH, SIKe 0a3yeThbCsl Ha alropurMax 3
BHKOPHCTAHHSAM KOMAH/I MAaHiNyJI0BAHHA diTaMH.

Keywords—pseudorandom number generator; maximum length
sequence; a Galois field; algorithm; Assembler.

Knrouosi cnosa—eenepamop nceedogunaokosux uucen; M-
nocnioognicmu; none Ianya; anzopumm; Acemonep.
L INTRODUCTION

The pseudorandom number generators are widely used in
different areas of scientific and practical activities, simulation

C. JloniHoBCBKa
xagespa iHpOpMATHKH
ITpnkapriaTchkuii HaI[iOHATEHUI YHIBEpCUTET
imMeni Bacuna Credanuka
IBaHO-®paHKiBChK, YKpaiHa
sdolinovska@gmail.com

modeling, methods of statistical testing, probabilistic testing, and
applied cryptography.

One of the ways of obtaining random numbers is the use of
mathematical transformations which allow to obtain a numeric
sequence, which by their characteristics is close to real random
processes.

There are a number of methods for constructing pseudorandom
number generators [1-2]. Mainly focuses on hardware
implementation of digital elements, although many of the software
modules is the need to generate pseudorandom numbers it
programmatically.

The aim of the report is the analysis of the algorithmic features of
generating pseudo-random sequences over a Galois field GF(2) by
means of programming languages high-level programming language
of high level with low abstraction level and the Assembler language.

11. DESCRIPTION OF BASIC MATERTAL

Pseudorandom number generators are widely used in various
areas of scientific and practical activities, such as simulation,
methods of statistical tests, probability testing and applied
cryptography.

Mathematical transformations are one of the ways to generate

random numbers. This method provides a numerical sequence with
characteristics similar to real random processes.

87

There are several methods for constructing pseudorandom
number generator (PRG). Basically it is a hardware implementation
based on digital eclements, which allows to provide high speed
characteristics of the generator, although many software modules
needs to generate pseudorandom sequences using software methods.
Algorithmic generator component implementation is given
insufficient attention.

The purpose of the report is the analysis of algorithmic software
features to generate pseudorandom sequence over a Galois field
GF (2) by high-level languages, high-level programming language
with low level of abstraction and Assembler language.

A key problem in implementing generators pseudorandom binary
sequences is the problem of the formation of pseudorandom sequence

(PRS) maximum length L=20-1 with acceptable statistical

characteristics.

One of the main ways to implement the generators PRS is the use
of linear shift registers (LSR) a maximum period of linear feedback.

This way, under certain conditions, provides a pseudo-random
binary M-sequences or maximum length sequences (MLS).

When using transformations over Galois fields GF (p?) for M-
sequence must fulfill certain conditions [3]:

e p-prime number.
e All initial values are not necessarily equal to 0.

e Generating polynomial is irreducible (not decomposed into
multipliers lower degree).

e Generating polynomial is primitive (minimal polynomial of
a primitive element of the field GF (p/™) for a positive
integer m).

The figure shows the block diagram of the PRG configuration
over Galois primitive polynomial linear feedback is formed based on

a irreducible primitive polynomial f32= x324x224x21x+1 [4]:
| |
[Ele e [lelTelr}

Fig. 1.

Block diagram PRG

Galois generator compares each nonzero element of the field GF
(232) corresponding degree primitive element W =| 1; 0 |, modulo
£32=x324x224x24x+1.

Depending on the outcome of the command and the installation
ROL and value CF, bats reverse connection will be formed according
to the following table (operation XOR):

TABLE I. CONVERTING BITS BASED ON THE CARRY FLAG

CF Previous bit Runny bits Action
1 0 1 Inversion
1 1 0 p.bits
0 0 0 Duplication
0 1 1 p.bits

To generate PRS effective methods are [5-6]:
1. Using bit instruction.

2. Using bit mask.

3. Using bits field.

1. Use the bit instruction

With the implementation of this oscillator manner appropriate to
have used the shift command and groups intended for inspection or
installation of specific bits register using Carry Flag processor
architecture TA-32. So for a status register 20 bit and 21 bit setting
(for the circuit shown in Figure 1), you can use the following
command sequence (MASM32):

NextCode proc ;:START CONVERSION
ROL EAX,1 ; Rotate left EAX trough carry
JF CARRY?; Test carry flag (CF) =17
BT EAX, 20; Insert bit Ne20 EAX in CF
JF CARRY? ; CF == |
BTR EAX, 21 ; reset bit Ne21 EAX 0

.else
BTS EAX, 21 ;set bit Ne21 EAX 1
endif
.elsc;,“ ; CF==

BT EAX, 20 ;Insert bit Ne20 EAX in CF
IF CARRY? ; CF |
BTS EAX, 21 : set bit N2l EAX |
.else
BTR EAX, 21 ;reset bit Ne21 EAX 0
endif

2. Using bits field

High level languages allow you to use structures that represent a
specified number of bits is "bit field". The bit field is interpreted as
an integer type.

struct BitSet {
unsigned short m00 : 1;
unsigned short m01 : 1;

ﬁrisigned short m30 : 1;
unsigned short m31 : 1;

3
This arrangement allows you to get easy access to single bits by

performing the necessary manipulations with them, but characterized
redundancy command processor to check individual fields.

88

To perform shift operations is advisable to create the type of
union bit field and a variable of type integer (C language):

union mKode {
unsigned int kode;
BitSet mGalua;
1
I
Then shift operation and establishing certain bit may be
represented by the following code:

if (t. mGalua.m31==1)CF=true; //check bits Ne3 1
t.kode=t.kode << 1; //shift left by 1 bit
if (CF) {
if (t.mGalua.m20 == 1) //check bits No20
t.mGalua.m21 = 0;//reset bits No2 |
else tmGalua.m21 = 1; //set bits No21
else {
if (t.mGalua.m20 == 1) //check bits No20
t.mGalua.m21 = 1; //sct bits No2 1
else tmGalua.m21 = 0; //reset bits No2 1

»

3. Using bit mask

The bulk of the high-level languages, can perform bitwise
operations on operands that are the basis for the program PRG.

Checking and setting specific bit can be performed using bit-wise
operations.

For example, the block diagram in Figure 1:

check bit Ne20 - mask 0x00100000, and the operation "logical
AND";

setting bit Ne21 - mask 0x00200000 and operation "logical OR";

reset bit Ne21 - mask OxFFDFFFFF and operation "logical AND".

Using masks for bitwise operations in the bit field for program
PRG, may presented as code (C#):

bool CF = false;

if ((t&0x80000000)>0)CF=true;//check bits Ne3 1
t=t<<1;
if (CF){

if((t & 0x00100000) > 0) //check bits Ne20
t &= OxFFDFFFFF; //reset bits No21
else t [= 0x00200000; //set bits No2 |

elsé .{
((1&0x00100000) = 0) // check bits No20

t &= OxFFDFFFFF; //reset bits No2 1
else t |= 0x00200000; //set bits No2 1

——

1. TEST CONDITIONS

Software implementation of the PRG of the field GF (232) based
on a primitive irreducible polynomial f 32= x32+x22+x2+x+1 and
length 231

Software:

OS — Windows 10 Home x32

bits instruction: MASM32

bits mask: Visual C# Express 2015
bits field: Visual C++ Express 2015

Hardware

Intel® Core™ i5-4200U (up to 2.60 GHz) 4GB DDR3

AMD Phenom II X4 955 Black Edition 3.2GHz, RAM 4GB
DDR2

Testing performance (seconds)
60

42,1

14,2
11,3
) .
]

Bit Set Bits mask Bit field
Olntel® Core™ i5-4200U (up to 2.60 GHz) Q3'13 ®AMD Phenom Il X4 955 Black Edition 3.2GHz Q4'09

Fig. 2. Testing performance (seconds)

CONCLUSION

Thus, studies have found that program implementation to generate
the PRS over a Galois field GF (2) offer a number of ways that include
algorithmic complexity and speed implementation.

Using bit instruction, are available in the language Assembler
have the highest performance, though inferior to hardware
implementation and are complex algorithmic solution.

Using bit mask available in almost all programming languages are
characterized by simplicity and algorithmic implementation is their
best solution, providing sufficient performance.

Using bits field in high-level languages with a low level of
abstraction can significantly simplify the algorithmic complexity, but
do not provide sufficient performance generation.

It should be mentioned that speed software implementation
significantly depends on the CPU architecture, speed RAM.

REFERENCES

[11 JLB. Merpuimn, TeoperuuHi ocHOBU nepeTBopeHHs (opmu Ta
undyposoi 06podkn inpopmauii, K.: I3iMH MOY, 1997.

[2] B. M. Ky3neroB I'eHepaTopsl CiydailHBIX M IICEBIOCTYYAMHBIX
HociIeIoBaTeNbHOCTEHl Ha [UQPOBBIX OJIEMEHTAX 3aJepiKKH
(OCHOBBI TEOPUM ¥ METOIBI HOCTPOCHUS): JHUC. ... JIOKT. TEXH.
nayk: 05.13.05 : zaxmmena 28.01.2012. / Kysnenos, Banepwii
Muxaitnopuy; Kazanb, 2011.- 347 c.

[3]1 Donald E. Knuth. Art of Computer Programming, Volume 2:
Seminumerical Algorithms. (3rd Edition). Addison-Wesley.
Professional; 3 edition, 1997.- 784 p.

[4] A. S Beneuknii TIpuMuUTHBHBIE MaTPULLIl U TEHEPATOPbI
MCeBA0C y4aiiHbIX 10CJIe10BaTEILHOCTEH Tanya /
beneuxkuit.A.4., beneuknit.E.A. // WNndopmaunonusie

TeXHOJNOrnu B odpazosauuu. - 2014, - Ne 18. — C. 14-29.

[5] Schneier, Bruce. Applied Cryptography, Second Edition:
Protocols, Algorthms, and Source Code in C (cloth) (Publisher:
John Wiley & Sons, Inc. 816 p.

[6] H.®. KazakoBa IIporpammuas peann3anus yHUBEpCAILHOTO
CTaTUCTUYECKOTO TecTa Maypepa JUIS aHanu3a
TIceBAOCIy4YalHBIX 1ocnenoBarensHocteil / H. ®. Kaszakosa, 0.
B. lllep6una // Indpopmariiiina 6esnexa. - 2011. - Ne7(161). — C.
289-296.

&9

